Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Redetermination of Hg₂I₂

Mohammed Kars,^a* Thierry Roisnel,^b Vincent Dorcet,^b Allaoua Rebbah^a and Otero-Diáz L. Carlos^c

^aUniversité Houari-Boumedienne, Faculté de Chimie, Laboratoire Sciences des Matériaux, Bp 32 El-Alia Bab-Ezzouar, Algeria, ^bCentre de Diffractométrie X, Sciences Chimiques de Rennes, UMR 6226 CNRS Université de Rennes 1, Campus de Beaulieu, Avenue du Général Leclerc, France, and ^cDepartomento Inorgánica, Facultad C.C. Químicas, Universidad Complutense, 28040 Madrid, Spain Correspondence e-mail: mkarsdz@yahoo.fr

Received 21 November 2011; accepted 31 December 2011

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (Hg–Hg) = 0.001 Å; R factor = 0.039; wR factor = 0.044; data-to-parameter ratio = 28.1.

The crystal structure of mercurous iodide, Hg_2I_2 , has been determined previously from X-ray powder diffraction data [Havighurst (1926). *J. Am. Chem. Soc.* **48**, 2113–2125]. The results of the current redetermination based on single-crystal X-ray diffraction data provide more precise geometrical data and also anisotropic displacement parameters for the Hg and I atoms, which are both situated on positions with site-symmetry 4mm. The structure consists of linear dimers I–Hg-Hg-I extending along the *c* axis with an Hg–Hg distance of 2.5903 (13) Å. The overall coordination sphere of the Hg⁺ atom is a considerably distorted octahedron. The crystal specimen under investigation was twinned by non-merohedry with a refined twin domain fraction of 0.853 (14):0.147 (14).

Related literature

The structures of the mercurous halides Hg_2X_2 (X = Cl, Br, I) were originally determined from X-ray powder data by Havighurst (1926). Studies based on single crystals for X = F, Cl, Br were reported by Dorm (1970) and for X = F also by Grdenić & Djordjević (1956) and Schrötter & Müller (1992). For the physical properties of mercurous halides, see: Zadokhin & Solodovnik (2004); Markov *et al.* (2007, 2010); Taylor *et al.* (2011). For theoretical studies of the structures of mercurous halides, see: Liao & Zhang (1995); Liao & Schwarz (1997).

Experimental

Crystal data Hg₂I₂

 $M_r = 654.98$

Tetragonal, *I4/mmm* a = 4.8974 (9) Å c = 11.649 (2) Å V = 279.40 (9) Å³

Data collection

Z = 2

Bruker APEXII CCD	44
diffractometer	25
Absorption correction: multi-scan	16
(TWINABS; Bruker, 2006)	R_{i}
$T_{\min} = 0.024, \ T_{\max} = 0.072$	

Refinement

 $R[F^2 > 3\sigma(F^2)] = 0.039$ $wR(F^2) = 0.044$ S = 1.47253 reflections term 448 measured reflections 253 independent reflections 164 reflections with $I > 3\sigma(I)$ $R_{int} = 0.056$

9 parameters $\Delta \rho_{\text{max}} = 4.99 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -4.73 \text{ e } \text{ Å}^{-3}$

Table 1

Selected bond lengths (Å).

Hg1-I1	2.7266 (17)	$Hg1-I1^{i}$	3.5000 (9)
Symmetry code: (i) $-x$ –	$-\frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}.$		

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT* and *CELL_NOW* (Bruker, 2006); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *JANA2006* (Petříček *et al.*, 2006); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *JANA2006*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2566).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2006). APEX2, SAINT, CELL_NOW and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dorm, E. (1970). J. Chem. Soc. D, pp. 466-467.
- Grdenić, D. & Djordjević, C. (1956). J. Chem. Soc. pp. 1316-1319.
- Havighurst, R. J. (1926). J. Am. Chem. Soc. 48, 2113-2125.
- Liao, M. S. & Schwarz, W. H. E. (1997). J. Alloys Compd, 246, 124-130.
- Liao, M. S. & Zhang, Q. (1995). J. Mol. Struct. (THEOCHIM), 358, 195-203.
- Markov, Yu. F., Knorr, K. & Roginski, E. M. (2007). Ferroelectrics, 359, 82-93.
- Markov, Yu. F., Roginski, E. M. & Wallacher, D. (2010). Bull. Russ. Acad. Sci. Phys. **74**, 1198–1202.
- Petříček, V., Dušék, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.
- Schrötter, F. & Müller, B. G. (1992). Z. Anorg. Allg. Chem. 618, 53-58.
- Taylor, R. E., Bai, S. & Dybowski, C. (2011). J. Mol. Struct. 987, 193-198.
- Zadokhin, B. S. & Solodovnik, E. V. (2004). Phys. Solid State, 46, 2110-2114.

Mo $K\alpha$ radiation

 $0.10 \times 0.06 \times 0.04$ mm

 $\mu = 65.76 \text{ mm}^{-1}$

T = 150 K

supplementary materials

Acta Cryst. (2012). E68, i11 [doi:10.1107/S1600536811056339]

Redetermination of Hg₂I₂

M. Kars, T. Roisnel, V. Dorcet, A. Rebbah and O.-D. L. Carlos

Comment

Les cristaux d'halogénures de mercure(I) de formulation Hg_2X_2 (X = F, Cl, Br et I) sont connus pour leurs propriétés physiques anisotropes (acousto-optiques, biréfringences *etc*). Ces dernières années, ces composés ont fait l'objet de nombreux travaux, essentiellement pour leurs propriétés dynamiques (Zadokhin & Solodovnik, 2004), ferroélastiques (Markov *et al.* 2007, 2010) et résonnances magnétiques nucléaires (NMR) (Taylor *et al.*, 2011). La présence de liaisons Hg—Hg, qui est l'une des caractéristiques de ce type de composé a suscité plusieurs études quant à la nature et aux propriétés de ces liaisons (Liao & Zhang, 1995; Liao & Schwarz, 1997). La structure de ces halogènures a été déterminée au préalable par diffraction des rayons X sur poudre (Havighurst, 1926), puis sur monocristal pour Hg₂X₂ (X: F, Cl et Br) par Dorm (1970) et pour Hg₂F₂ par Schrötter & Müller (1992). La structure de Hg₂I₂ est analogue à celle des autres halogènures, elle est caractérisée par des chaînes linéaires I—Hg—Hg—I le long de l'axe c (Fig. 1). A la différence des autres halogènures formés par les ions Hg₂⁺² et X, l'iodure de mercure(I) Hg₂I₂ quant à lui est caractérisé par des dimères 'HgI' (Grdenić & Djordjević, 1956).

La présente redétermination par diffraction des rayons X sur monocristal, fournit plus de précisions sur les distances interatomiques, ainsi que sur les paramètres d'agitation thermiques (ADP's). Les liaisons Hg—Hg [2.5903 (13) Å] et Hg—I [2.7266 (17) Å] sont différentes de celles observées par Havighurst (1926) [respectivement 2.694 et 2.682 Å]. Quatres longues distances Hg—I de 3.5000 (9) Å sont aussi observées, donnant aux atomes de Hg un environnement octadérique distordu (Fig. 2). Les résultats obtenus sur monocristal montrent une tendance des différentes liaisons à varier selon l'électronégativité de l'halogène (Havighurst, 1926). En effet, la liaison Hg—halogéne augmente du fluor à l'iode d'environ 0.58 et 0.78 Å respectivement pour la courte et la longue distance: Hg—F [2.14 (2) et 2.715 (5) Å]; Hg—Cl [2.43 (4) et 3.209 (6) Å]; Hg—Br [2.71 (2) et 3.32 (1) Å] et Hg—I [2.7266 (17) et 3.5000 (9) Å]; quant à liaison Hg—Hg, elle augmente seulement de 0.08 Å: F [2.507 (1) Å]; Cl [2.526 (6) Å]; Br [2.49 (1) Å] et I [2.5903 (13) Å]. Ceci contredit en partie les conclusions de Liao & Zhang, (1995) and Liao & Schwarz (1997), selon lesquelles la liaison Hg—Hg est indépendante de l'électronégativité de l'halogéne. Toutefois une redétermination structurale de Hg₂Br₂ semble nécessaire pour confirmer cette tendance. Enfin, il faut remarquer que comme pour les autres halogénures de mercures(I), l'agitation thermique (ADP's) autour du mercure U_{11} (Hg) est supérieure à U_{33} (Hg), alors qu'autour de l'iode elle est comparable à celles des autres halogènes.

Experimental

Les monocristaux de Hg₂I₂ ont été obtenus lors des essais de synthèse du clathrate I₈Hg₁₀Ge₃₆, à partir d'un mélange d'éléments purs et en présence de HgO et WO₃ comme agents précurseurs. Le mélange broyé puis scellé dans un tube en quartz, est porté à une température de 1073 K pendant environ 10 jours. Des cristaux de la phase α -Ge ont été aussi identifiés.

Refinement

La structure a été déterminée par isotypie aux halogénures de mercure(I) dans le groupe d'espace I4/*mmm*. Le cristal étudié correspond à une macle non-mériédrique, contitué de deux individus mis en évidence par le programme *CELL_NOW* (Bruker, 2006) avec une matrice de macle de [0.137 0.983 0.053, 0.984 -0.149 0.038, 0.250 0.262 -0.988]. La structure a été affinée avec JANA2006 en utilisant un fichier de type *HKL5* crée par le programme *TWINABS* (Bruker, 2006) et contenant la contribution de ces deux individus. En fin d'affinement, la fraction en volume des composants est de: 0.853 (14): 0.147 (14), et la carte de densité électronique est de: $\rho_{max} = 4.99$ e Å⁻³ (localisée à 0.88 Å de I) et $\rho_{min} = -4.73$ e Å⁻³ (localisée à 1.99 Å de Hg).

Figures

Fig. 1. Structure de Hg_2I_2 montrant les chaînes linéaire I—Hg—Hg—I le long de l'axe *c*, avec un déplacement des ellipsoīdes à 80% de probabilité.

Fig. 2. Environnement octaédrique distordu des atomes de Hg, avec un déplacement des ellipsoīdes à 80% de probabilité.

mercury(I) iodide

Crystal data

Hg ₂ I ₂
$M_r = 654.98$
Tetragonal, I4/mmm
Hall symbol: -I 4 2
<i>a</i> = 4.8974 (9) Å
c = 11.649 (2) Å
$V = 279.40 (9) \text{ Å}^3$
Z = 2
F(000) = 532

 $D_x = 7.783 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 274 reflections $\theta = 4.5-32.9^{\circ}$ $\mu = 65.76 \text{ mm}^{-1}$ T = 150 KPrism, black $0.10 \times 0.06 \times 0.04 \text{ mm}$

Data collection

Bruker APEXII CCD diffractometer	253 independent reflections
Radiation source: X-ray tube	164 reflections with $I > 3\sigma(I)$
graphite	$R_{\rm int} = 0.056$
ω and ϕm scans	$\theta_{\text{max}} = 39.6^{\circ}, \ \theta_{\text{min}} = 3.5^{\circ}$
Absorption correction: multi-scan (<i>TWINABS</i> ; Bruker, 2006)	$h = -5 \rightarrow 6$
$T_{\min} = 0.024, T_{\max} = 0.072$	$k = 0 \rightarrow 8$
448 measured reflections	$l = 0 \rightarrow 20$

Refinement

Refinement on F	0 constraints
$R[F^2 > 2\sigma(F^2)] = 0.039$	Weighting scheme based on measured s.u.'s $w = 1/(\sigma^2(F) + 0.0001F^2)$
$wR(F^2) = 0.044$	$(\Delta/\sigma)_{\rm max} = 0.0003$
<i>S</i> = 1.47	$\Delta \rho_{max} = 4.99 \text{ e } \text{\AA}^{-3}$
253 reflections	$\Delta \rho_{min} = -4.73 \text{ e} \text{ Å}^{-3}$
9 parameters	Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
0 restraints	Extinction coefficient: 27 (7)

Special details

Refinement. The refinement was carried out against all reflections. The conventional *R*-factor is always based on *F*. The goodness of fit as well as the weighted *R*-factor are based on *F* and F^2 for refinement carried out on *F* and F^2 , respectively. The threshold expression is used only for calculating *R*-factors *etc.* and it is not relevant to the choice of reflections for refinement. The crystal studied was twinned by non-merohedry with a refined twin domain fraction of 0.853 (14): 0.147 (14). The program used for refinement, *Jana2006*, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force *S* to be one. Therefore the values of *S* are usually larger than the ones from the *SHELX* program.

Fractional atomic coordinates and	isotropic or	eauivalent isotroni	c displacement	parameters	$(Å^2$)
i i actional alonite cool amales and	ison opic or	eguivaieni isoiropi	e aispiacemeni	parameters	(11)	/

	x	У	Z		$U_{\rm iso}*/U_{\rm eq}$	
Hg1	0	0	0.111	18 (6)	0.0263 (2)	
I1	0	0	0.345	524 (10)	0.0207 (3)	
Atomic displac	cement paramete	$rs(\dot{A}^2)$	- 33	- 12	- 13	- 23
	$U^{\prime\prime}$	U^{22}	U^{ss}	U^{12}	U^{13}	U^{23}
Hg1	0.0356 (4)	0.0356 (4)	0.0078 (3)	0	0	0
I1	0.0271 (6)	0.0271 (6)	0.0079 (5)	0	0	0

Geometric parameters (Å, °)

Hg1—Hg1 ⁱ	2.5903 (13)	Hg1—I1 ⁱⁱⁱ	3.5000 (9)	
Hg1—I1	2.7266 (17)	Hg1—I1 ^{iv}	3.5000 (9)	
Hg1—I1 ⁱⁱ	3.5000 (9)	Hg1—I1 ^v	3.5000 (9)	
Hg1 ⁱ —Hg1—I1	180.0 (5)	I1 ^{iv} —Hg1—I1 ^v	88.795 (15)	
Hg1 ⁱ —Hg1—I1 ⁱⁱ	98.34 (2)	Hg1—I1—Hg1 ⁱⁱ	98.34 (2)	
Hg1 ⁱ —Hg1—I1 ⁱⁱⁱ	98.34 (2)	Hg1—I1—Hg1 ⁱⁱⁱ	98.34 (2)	
Hg1 ⁱ —Hg1—I1 ^{iv}	98.34 (2)	Hg1—I1—Hg1 ^{iv}	98.34 (2)	
Hg1 ⁱ —Hg1—I1 ^v	98.34 (2)	Hg1—I1—Hg1 ^v	98.34 (2)	
I1—Hg1—I1 ⁱⁱ	81.66 (2)	Hg1—I1—I1 ^{vi}	180.0 (5)	
I1—Hg1—I1 ⁱⁱⁱ	81.66 (2)	Hg1 ⁱⁱ —I1—Hg1 ⁱⁱⁱ	88.795 (16)	
I1—Hg1—I1 ^{iv}	81.66 (2)	Hg1 ⁱⁱ —I1—Hg1 ^{iv}	88.795 (16)	
I1—Hg1—I1 ^v	81.66 (2)	Hg1 ⁱⁱ —I1—Hg1 ^v	163.32 (4)	
I1 ⁱⁱ —Hg1—I1 ⁱⁱⁱ	88.795 (15)	Hg1 ⁱⁱ —I1—I1 ^{vi}	81.66 (2)	
I1 ⁱⁱ —Hg1—I1 ^{iv}	88.795 (15)	Hg1 ⁱⁱⁱ —I1—Hg1 ^{iv}	163.32 (4)	
I1 ⁱⁱ —Hg1—I1 ^v	163.32 (4)	Hg1 ⁱⁱⁱ —I1—Hg1 ^v	88.795 (16)	
I1 ⁱⁱⁱ —Hg1—I1 ^{iv}	163.32 (4)	Hg1 ⁱⁱⁱ —I1—I1 ^{vi}	81.66 (2)	
I1 ⁱⁱⁱ —Hg1—I1 ^v	88.795 (15)	Hg1 ^{iv} —I1—Hg1 ^v	88.795 (16)	
Symmetry codes: (i) - <i>x</i> , <i>y</i> , - <i>z</i> ; (ii) - <i>x</i> -1/2, <i>y</i> -1/2, - <i>z</i> +1/2; (iii) - <i>x</i> -1/2, <i>y</i> +1/2, - <i>z</i> +1/2; (iv) - <i>x</i> +1/2, <i>y</i> -1/2, - <i>z</i> +1/2; (v) - <i>x</i> +1/2, <i>y</i> +1/2, - <i>z</i> +1/2; (vi) - <i>x</i> , <i>y</i> , - <i>z</i> +1.				

Fig. 1

